Search This Blog

Friday, January 6, 2017

Oganesson (NEW ELEMENT) - Periodic Table of Videos



Oganesson (symbol Og) is a transactinide chemical element with the atomic number 118. It was first synthesized in 2002 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. In December 2015, it was recognized as one of four new elements by the Joint Working Party of international scientific bodies IUPAC and IUPAP. It was formally named on 28 November 2016. The name is in line with the tradition of honoring a scientist and recognizes nuclear physicist Yuri Oganessian, who has played a leading role in the discovery of the heaviest elements in the periodic table. It is one of only two elements named after a living person at the time of naming, the other being seaborgium.
Oganesson has the highest atomic number and highest atomic mass of all known elements. The radioactive oganesson atom is very unstable, and since 2005, only four atoms of the isotope Og have been detected. Although this allowed very little experimental characterization of its properties and possible compounds, theoretical calculations have resulted in many predictions, including some surprising ones. For example, although oganesson is a member of group 18 – the first synthetic one to be so – it may be significantly reactive, unlike all the other elements of that group (the noble gases). It was formerly thought to be a gas under normal conditions but is now predicted to be a solid due to relativistic effects. On the periodic table of the elements it is a p-block element and the last one of the 7th period.

HISTORY:

Early speculation

The Danish physicist Niels Bohr was the first to seriously consider the possibility of an element with atomic number as high as 118, noting in 1922 that such an element would take its place in the periodic table below radon as the seventh noble gas. Following this, Aristid von Grosse wrote an article in 1965 predicting the likely properties of element 118. These were remarkably early predictions, given that it was not yet known how to produce elements artificially in 1922, and that the existence of the island of stability had not yet been theorized in 1965. It took eighty years from Bohr's initial prediction before oganesson was first successfully synthesised, although its chemical properties have not yet been investigated to see if it really does behave as the heavier congener of radon.

Unsuccessful synthesis attempts

In late 1998, Polish physicist Robert Smolańczuk published calculations on the fusion of atomic nuclei towards the synthesis of superheavy atoms, including oganesson.[15] His calculations suggested that it might be possible to make oganesson by fusing lead with krypton under carefully controlled conditions.
In 1999, researchers at Lawrence Berkeley National Laboratory made use of these predictions and announced the discovery of livermorium and oganesson, in a paper published in Physical Review Letters, and very soon after the results were reported in Science. The researchers reported to have performed the reaction
86
36
Kr
 + 208
82
Pb
 → 293
118
Og
 + 
n
.
The following year, they published a retraction after researchers at other laboratories were unable to duplicate the results and the Berkeley lab could not duplicate them either. In June 2002, the director of the lab announced that the original claim of the discovery of these two elements had been based on data fabricated by principal author Victor Ninov.

Discovery reports

The first decay of atoms of oganesson was observed in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, by a joint team of Russian and American scientists. Headed by Russian nuclear physicist Yuri Oganessian, the team included American scientists of the Lawrence Livermore National Laboratory, California. On 9 October 2006, the researchers announced that they had indirectly detected a total of three (possibly four) nuclei of oganesson-294 (one or two in 2002 and two more in 2005) produced via collisions of californium-249 atoms and calcium-48 ions.
249
98
Cf
 + 48
20
Ca
 → 294
118
Og
 + 3 
n
.
Schematic diagram of oganesson-294 alpha decay, with a half-life of 0.89 ms and a decay energy of 11.65 MeV. The resulting livermorium-290 decays by alpha decay, with a half-life of 10.0 ms and a decay energy of 10.80 MeV, to flerovium-286. Flerovium-286 has a half-life of 0.16 s and a decay energy of 10.16 MeV, and undergoes alpha decay to copernicium-282 with a 0.7 rate of spontaneous fission. Copernicium-282 itself has a half-life of only 1.9 ms and has a 1.0 rate of spontaneous fission.
Radioactive decay pathway of the isotope oganesson-294.[9] The decay energy and average half-life is given for the parent isotope and each daughter isotope. The fraction of atoms undergoing spontaneous fission (SF) is given in green.
In 2011, IUPAC evaluated the 2006 results of the Dubna–Livermore collaboration and concluded: "The three events reported for the Z = 118 isotope have very good internal redundancy but with no anchor to known nuclei do not satisfy the criteria for discovery".
Because of the very small fusion reaction probability (the fusion cross section is ~0.3–0.6 pb or (3–6)×10−41 m2) the experiment took four months and involved a beam dose of 2.5×1019 calcium ions that had to be shot at the californium target to produce the first recorded event believed to be the synthesis of oganesson. Nevertheless, researchers are highly confident that the results are not a false positive, since the chance that the detections were random events was estimated to be less than one part in 100000.
In the experiments, the alpha-decay of three atoms of oganesson was observed. A fourth decay by direct spontaneous fission was also proposed. A half-life of 0.89 ms was calculated: 294Og decays into 290Lv by alpha decay. Since there were only three nuclei, the half-life derived from observed lifetimes has a large uncertainty: 0.89+1.07
−0.31
 ms
.
294
118
Og
 → 290
116
Lv
 + 4
2
He
The identification of the 294Og nuclei was verified by separately creating the putative daughter nucleus 290Lv directly by means of a bombardment of 245Cm with 48Ca ions,
245
96
Cm
 + 48
20
Ca
 → 290
116
Lv
 + 3 
n
,
and checking that the 290Lv decay matched the decay chain of the 294Og nuclei. The daughter nucleus 290Lv is very unstable, decaying with a lifetime of 14 milliseconds into 286Fl, which may experience either spontaneous fission or alpha decay into 282Cn, which will undergo spontaneous fission.
In a quantum-tunneling model, the alpha decay half-life of 294Og was predicted to be 0.66+0.23
−0.18
 ms
 with the experimental Q-value published in 2004. Calculation with theoretical Q-values from the macroscopic-microscopic model of Muntian–Hofman–Patyk–Sobiczewski gives somewhat lower but comparable results.

Confirmation

In December 2015, the Joint Working Party of international scientific bodies International Union of Pure and Applied Chemistry (IUPAC) and International Union of Pure and Applied Physics (IUPAP) recognized the element's discovery and assigned the priority of the discovery to the Dubna–Livermore collaboration.

Naming

Using Mendeleev's nomenclature for unnamed and undiscovered elements, oganesson is sometimes known as eka-radon (until the 1960s as eka-emanation, emanation being the old name for radon).[35] In 1979, IUPAC assigned the systematic placeholder name ununoctium to the undiscovered element, with the corresponding symbol of Uuo, and recommended it to be used until after confirmed discovery of the element. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations are mostly ignored among scientists in the field, who call it "element 118", with the symbol of (118) or even simply 118.
Before the retraction in 2002, the researchers from Berkeley had intended to name the element ghiorsium (Gh), after Albert Ghiorso (a leading member of the research team).
The Russian discoverers reported their synthesis in 2006. According to IUPAC recommendations, the discoverers of a new element have the right to suggest a name. In 2007, the head of the Russian institute stated the team were considering two names for the new element: flyorium, in honor of Georgy Flyorov, the founder of the research laboratory in Dubna; and moskovium, in recognition of the Moscow Oblast where Dubna is located. He also stated that although the element was discovered as an American collaboration, who provided the californium target, the element should rightly be named in honor of Russia since the Flerov Laboratory of Nuclear Reactions at JINR was the only facility in the world which could achieve this result. These names were later proposed for element 114 (flerovium) and element 116 (moscovium). However, the final name proposed for element 116 was instead livermorium, and the name moscovium was later proposed for element 115 instead.
Traditionally, the names of all noble gases end in "-on", with the exception of helium, which was not known to be a noble gas when discovered. The IUPAC guidelines valid at the moment of the discovery approval however required all new elements be named with the ending "-ium". While the provisional name ununoctium followed this convention, a new IUPAC recommendation published in 2016 recommends using the "-on" ending for new group 18 elements, no matter whether they turn out to be a noble gas or not.
In June 2016 IUPAC announced that it planned to give the element the name oganesson (symbol: Og), in honour of the Russian nuclear physicist Yuri Oganessian, and the name became official on 28 November 2016.

Thursday, December 29, 2016

Technetium - Periodic Table of Videos


Technetium is a chemical element with symbol Tc and atomic number 43. It is the lightest element of which all isotopes are radioactive; none are stable. Only one other such element, promethium, is followed (in the periodic table) by elements with stable isotopes. Nearly all technetium is produced synthetically, and only minute amounts are found in the Earth's crust. Naturally occurring technetium is a spontaneous fission product in uranium ore or the product of neutron capture in molybdenum ores. The chemical properties of this silvery gray, crystalline transition metal are intermediate between rhenium and manganese.
Many of technetium's properties were predicted by Dmitri Mendeleev before the element was discovered. Mendeleev noted a gap in his periodic table and gave the undiscovered element the provisional name ekamanganese (Em). In 1937, technetium (specifically the technetium-97 isotope) became the first predominantly artificial element to be produced, hence its name (from the Greek τεχνητός, meaning "artificial", + -ium).
Its short-lived gamma ray-emitting nuclear isomertechnetium-99m—is used in nuclear medicine for a wide variety of diagnostic tests. Technetium-99 is used as a gamma-ray-free source of beta particles. Long-lived technetium isotopes produced commercially are by-products of fission of uranium-235 in nuclear reactors and are extracted from nuclear fuel rods. Because no isotope of technetium has a half-life longer than 4.2 million years (technetium-98), the 1952 detection of technetium in red giants, which are billions of years old, helped to prove that stars can produce heavier elements.

The discovery of element 43 was finally confirmed in a December 1936 experiment at the University of Palermo in Sicily by Carlo Perrier and Emilio Segrè. In mid-1936, Segrè visited the United States, first Columbia University in New York and then the Lawrence Berkeley National Laboratory in California. He persuaded cyclotron inventor Ernest Lawrence to let him take back some discarded cyclotron parts that had become radioactive. Lawrence mailed him a molybdenum foil that had been part of the deflector in the cyclotron.
Segrè enlisted his colleague Perrier to attempt to prove, through comparative chemistry, that the molybdenum activity was indeed from an element with the atomic number 43. They succeeded in isolating the isotopes technetium-95m and technetium-97. University of Palermo officials wanted them to name their discovery "panormium", after the Latin name for PalermoPanormus. In 1947, element 43 was named after the Greek word τεχνητός, meaning "artificial", since it was the first element to be artificially produced. Segrè returned to Berkeley and met Glenn T. Seaborg. They isolated the metastable isotopetechnetium-99m, which is now used in some ten million medical diagnostic procedures annually.
In 1952, astronomer Paul W. Merrill in California detected the spectral signature of technetium (specifically wavelengths of 403.1 nm, 423.8 nm, 426.2 nm, and 429.7 nm) in light from S-type red giants. The stars were near the end of their lives, yet were rich in this short-lived element, indicating that it was being produced in the stars by nuclear reactions. This evidence bolstered the hypothesis that heavier elements are the product of nucleosynthesis in stars. More recently, such observations provided evidence that elements are formed by neutron capture in the s-process.
Since that discovery, there have been many searches in terrestrial materials for natural sources of technetium. In 1962, technetium-99 was isolated and identified in pitchblende from the Belgian Congo in extremely small quantities (about 0.2 ng/kg). There it originates as a spontaneous fission product of uranium-238. The Oklo natural nuclear fission reactor contains evidence that significant amounts of technetium-99 were produced and have since decayed into ruthenium-99.

Silver Halides - Periodic Table of Videos



A Silver Halide (or silver salt) is one of the chemical compounds that can form between the element silver and one of the halogens. In particular, brominechlorineiodine and fluorine may each combine with silver to produce silver bromide (AgBr), silver chloride (AgCl), silver iodide (AgI), and three forms of silver fluoride, respectively.
As a group, they are often referred to as the silver halides, and are often given the pseudo-chemical notation AgX. Although most silver halides involve silver atoms with oxidation states of +1 (Ag+), silver halides in which the silver atoms have oxidation states of +2 (Ag2+) are known, of which silver(II) fluoride is the only known stable one.
Silver halides are light-sensitive chemicals, and are commonly used in photographic film and paper.

Silver halides, except for silver fluoride, are very insoluble in water. Silver nitrate can be used to precipitate halides; this application is useful in quantitative analysis of halides. The three main silver halide compounds have distinctive colours that can be used to quickly identify halide ions in a solution. The silver chloride compound forms a white precipitate, silver bromide a creamy coloured precipitate and silver iodide a yellow coloured precipitate.
However, close attention is necessary for other compounds in the test solution. Some compounds can considerably increase or decrease the solubility of AgX. Examples of compounds that increase the solubility include: cyanide, thiocyanate, thiosulfate, thiourea, amines, ammonia, sulfite, thioether, crown ether. Examples of compounds that reduces the solubility include many organic thiols and nitrogen compounds that do not possess solubilizing group other than mercapto group or the nitrogen site, such as mercaptooxazoles, mercaptotetrazoles, especially 1-phenyl-5-mercaptotetrazole, benzimidazoles, especially 2-mercaptobenzimidazole, benzotriazole, and these compounds further substituted by hydrophobic groups. Compounds such as thiocyanate and thiosulfate enhance solubility when they are present in a sufficiently large quantity, due to formation of highly soluble complex ions, but they also significantly depress solubility when present in a very small quantity, due to formation of sparingly soluble complex ions.

Friday, April 22, 2016

How Benzene was discovered ?

The word "benzene" derives historically from "gum benzoin" (benzoin resin), an aromatic resin known to European pharmacists and perfumers since the 15th century as a product of southeast Asia.[11] An acidic material was derived from benzoin by sublimation, and named "flowers of benzoin", or benzoic acid. The hydrocarbon derived from benzoic acid thus acquired the name benzin, benzol, or benzene.[12] Michael Faraday first isolated and identified benzene in 1825 from the oily residue derived from the production of illuminating gas, giving it the name bicarburet of hydrogen.[13][14] In 1833, Eilhard Mitscherlich produced it by distilling benzoic acid (from gum benzoin) and lime. He gave the compound the name benzin.[15] In 1836, the French chemist Auguste Laurent named the substance "phène";[16] this word has become the root of the English word "phenol", which is hydroxylated benzene, and "phenyl", the radical formed by abstraction of a hydrogen atom (free radical H•) from benzene.
Historic benzene formulae as proposed by Kekulé.[17]
In 1845, Charles Mansfield, working under August Wilhelm von Hofmann, isolated benzene from coal tar.[18] Four years later, Mansfield began the first industrial-scale production of benzene, based on the coal-tar method.[19][20]Gradually, the sense developed among chemists that a number of substances were chemically related to benzene, comprising a diverse chemical family. In 1855, Hofmann used the word "aromatic" to designate this family relationship, after a characteristic property of many of its members.[21] In 1997, benzene was detected in deep space.[22]

Ring formula[edit]

Historic benzene formulae (from left to right) by Claus (1867),[23] Dewar(1867),[24] Ladenburg (1869),[25] Armstrong (1887),[26] Thiele (1899)[27] and Kekulé (1865). Dewar benzene and prismane are different chemicals that have Dewar's and Ladenburg's structures. Thiele and Kekulé's structures are used today.
The empirical formula for benzene was long known, but its highly polyunsaturated structure, with just one hydrogen atom for each carbon atom, was challenging to determine. Archibald Scott Couper in 1858 and Joseph Loschmidt in 1861[28] suggested possible structures that contained multiple double bonds or multiple rings, but too little evidence was then available to help chemists decide on any particular structure.
In 1865, the German chemist Friedrich August Kekulé published a paper in French (for he was then teaching in Francophone Belgium) suggesting that the structure contained a ring of six carbon atoms with alternating single and double bonds. The next year he published a much longer paper in German on the same subject.[29][30] Kekulé used evidence that had accumulated in the intervening years—namely, that there always appeared to be only one isomer of any monoderivative of benzene, and that there always appeared to be exactly three isomers of every disubstituted derivative—now understood to correspond to the ortho, meta, and para patterns of arene substitution—to argue in support of his proposed structure.[31] Kekulé's symmetrical ring could explain these curious facts, as well as benzene's 1:1 carbon-hydrogen ratio.[32]
The new understanding of benzene, and hence of all aromatic compounds, proved to be so important for both pure and applied chemistry that in 1890 the German Chemical Society organized an elaborate appreciation in Kekulé's honor, celebrating the twenty-fifth anniversary of his first benzene paper. Here Kekulé spoke of the creation of the theory. He said that he had discovered the ring shape of the benzene molecule after having a reverie or day-dream of a snake seizing its own tail (this is a common symbol in many ancient cultures known as the Ouroboros or Endless knot).[33] This vision, he said, came to him after years of studying the nature of carbon-carbon bonds. This was 7 years after he had solved the problem of how carbon atoms could bond to up to four other atoms at the same time. Curiously, a similar, humorous depiction of benzene had appeared in 1886 in the Berichte der Durstigen Chemischen Gesellschaft (Journal of the Thirsty Chemical Society), a parody of theBerichte der Deutschen Chemischen Gesellschaft, only the parody had monkeys seizing each other in a circle, rather than snakes as in Kekulé's anecdote.[34] Some historians have suggested that the parody was a lampoon of the snake anecdote, possibly already well known through oral transmission even if it had not yet appeared in print.[12] Kekulé's 1890 speech[35] in which this anecdote appeared has been translated into English.[36] If the anecdote is the memory of a real event, circumstances mentioned in the story suggest that it must have happened early in 1862.[37]
The cyclic nature of benzene was finally confirmed by the crystallographer Kathleen Lonsdale in 1929.[38][39]

Nomenclature[edit]

The German chemist Wilhelm Körner suggested the prefixes ortho-, meta-, para- to distinguish di-substituted benzene derivatives in 1867; however, he did not use the prefixes to distinguish the relative positions of the substituents on a benzene ring.[40] It was the German chemist Karl Gräbe who, in 1869, first used the prefixes ortho-, meta-, para- to denote specific relative locations of the substituents on a di-substituted aromatic ring (viz, naphthalene).[41] In 1870, the German chemist Viktor Meyer first applied Gräbe's nomenclature to benzene.[42]

Early applications[edit]

In the 19th and early-20th centuries, benzene was used as an after-shave lotion because of its pleasant smell. Prior to the 1920s, benzene was frequently used as an industrial solvent, especially for degreasing metal. As its toxicity became obvious, benzene was supplanted by other solvents, especially toluene (methyl benzene), which has similar physical properties but is not as carcinogenic.
In 1903, Ludwig Roselius popularized the use of benzene to decaffeinate coffee. This discovery led to the production of Sanka. This process was later discontinued. Benzene was historically used as a significant component in many consumer products such as Liquid Wrench, several paint strippersrubber cements, spot removers, and other products. Manufacture of some of these benzene-containing formulations ceased in about 1950, while others continued, either as a component or a significantcontaminant until the late 1970s, when an increased incidence of leukemia was linked to Goodyear'Pliofilm production operations in Ohio.[citation needed] Until the late 1970s, many hardware stores, paint stores, and other retail outlets sold benzene in small cans, such as quart size, for general-purpose use. Many students were exposed to benzene in school and university courses while performing laboratory experiments with little or no ventilation in many cases.[citation needed] This dangerous practice has been almost eliminated.[citation needed]

Occurrence[edit]

Trace amounts of benzene are found in petroleum and coal. It is a byproduct of the incomplete combustion of many materials. For commercial use, until World War II, most benzene was obtained as a by-product of coke production (or "coke-oven light oil") for the steel industry. However, in the 1950s, increased demand for benzene, especially from the growing polymers industry, necessitated the production of benzene from petroleum. Today, most benzene comes from the petrochemical industry, with only a small fraction being produced from coal.[43]